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Energy dissipation in solid friction
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Abstract. Dissipation in solid friction is studied as a function of the elastic properties of the two sliding
surfaces. The two surfaces have been constructed by embedding macroscopic asperities in an elastic layer.
It is shown that when the surfaces are rigid the energy dissipation is smaller than in the elastic case. The
scaling of the friction force as a function of the asperity number is also studied.
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1 Introduction

Solid friction has been always widely studied for its im-
portance in many technical and natural process. In spite
of the enormous effort done to connect macroscopic effects
with microscopic dynamics of asperities, many problems
are still open and are a subject of current interest [1,2].
An important question, which is not jet completely un-
derstood, is how the energy is dissipated in the asperity
interaction.

As proposed by Tomlinson [3], the dissipation is the
consequence of the multiplicity of metastable positions for
the sliding surfaces, due to the presence of the asperities.
At each jump between metastable positions, a small por-
tion of the sliding surface undergoes a displacement, dur-
ing which the energy is dissipated. The same conclusion
is reached in the model of independent asperities [4,5].
Similar mechanisms are often invoked to understand the
friction of an AFM with a surface [6] and in the wetting
of a liquid interface with a substrate [7,8].

Several numerical simulations have been done to un-
derstand how collective behaviour of many asperities may
actually destroy the multistable effects and how the fric-
tion force scales as a function of the asperity number
[9–12]. To check these ideas experimentally it is not easy,
because friction between two surfaces changes the surface
roughness and the experimental parameters may not be
constant during a long experiment. Furthermore in real
surfaces the asperities are small (of the order of a few mi-
crons). Thus it is very difficult to relate the jumps of the
surfaces to some characteristic length. For these reasons,
we decided to study the problem of the energy dissipation
on artificial surfaces, previously employed in other exper-
iments [13,14]. The advantage in using artificial surfaces
is that the size of the asperities and the elastic properties

a e-mail: cilibe@physique.ens-lyon.fr
b CNRS URA 1325

of the surfaces are very well controlled. From this point
of view the experiment can be seen as an analogic sim-
ulation of the interaction of two rough surfaces. However
the fact, that in a real experiment other sources of friction
could mask the multistable mechanism, makes the results
of these experiments more close to a real experiment of
friction. Furthermore, friction, between these two artifi-
cial surfaces, presents an interesting and complex dynam-
ics, which has been described in references [13–15]. Thus
it is interesting to study the dissipation mechanisms of
these surfaces.

In this paper we show that the jumps among meta-
stable positions are the most important source of dissi-
pation, if the surface compliance is the largest one in the
experimental set-up. In these experiments we can measure
the force induced by a single asperity and the energy dis-
sipated in a jump as a function of the surface compliance.

The paper is organised as follows: in the next section
the experimental set-up is described, in Section 3 the sin-
gle asperity case is discussed, the results with the interac-
tion of many asperities are described in Section 4. Finally
we conclude in Section 5.

2 The experimental set-up

The experimental set up, shown in Figure 1, is a modi-
fied version of those of references [13,14]. A slide of 10 cm
long and 10 cm wide is moved at constant speed V in the
x direction on a track with a rough surface. The motion of
the slide is maintained straight by two guides which avoid
the lateral motion. The rough surfaces of the slide and
of the track are constructed by embedding metallic spheres
of radius R = 3 mm in elastic layers with different stiff-
ness. For technical reasons the spheres of the slide are
made of bronze whereas those of the track are made of
steel. The spheres emerge of about 2 mm from the layer
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Fig. 1. (a) Cross section of the experimental apparatus; the
slide is moved at constant speed V and the friction dependent
force Fx is measured by a force transducer. The spheres are
embedded in an elastic layer. (b) bottom view of the slide.
(c) Expanded view of the contact between two spheres. The
spheres S1 and S2 have a radius R = 3 mm, y and x are
respectively the vertical and horizontal distance between the
sphere centres. yo and xo are respectively the unperturbed hor-
izontal and vertical distances of the sphere centres. xo is moved
at constant loading speed V . The slider is made of a plexiglass
plate and an elastic layer of rubber. The track is made of an
aluminium base and a plexiglass plate with holes in which the
sphere (S1) can move up and down. Between the plexiglass and
the base an elastic layer of rubber is inserted.

surfaces. In this way an artificial surface with controlled
roughness and elasticity is constructed. The maximum
roughness is exactly 2 mm. The details for a single asper-
ity are shown in Figure 1c. Each sphere is rather free to
move around its equilibrium position because of the elas-
ticity of the rubber layers. The dynamics has been studied
as a function of the matrix compliance, which has been
changed using materials with different elastic properties.

The system is composed by Nl lines parallel to the
loading speed direction (x). As shown in Figure 1b, each
line of the slide has n spheres, whereas the linear den-
sity of spheres on the track is nd. The spheres are ran-
domly distributed on the track surface. The values of n,
nd and Nl can be modified in the experimental appara-
tus, specifically 1 ≤ n ≤ 7, 5 m−1 ≤ nd ≤ 87 m−1;
1 ≤ Nl ≤ 11. Thus the mean number of interacting as-
perities on the slide can be changed from 1 to 80. The
mean distance between the sphere centres is about 4R
at the maximum sphere density. The slide is moved at

constant speed V , which can be changed in the range:
0.02 mm/s < V < 20 mm/s.

The force Fx(t) necessary to move the slide at constant
speed is measured by a force transducer. The transducer
signal, suitably amplified and filtered, is converted by a
16 bits A/D converter. The minimum detectable variation
of the friction force Fx is about 3× 10−2 N.

The experiment is performed at imposed distance yo

between the slide and the track. Therefore the normal
force Fy acting on the surfaces fluctuates. The mean value
〈Fy〉 of Fy can be changed by modifying yo. Fy(t) is also
measured by a force transducer and converted by a 16 bits
A/D converter with a sensitivity comparable to the hori-
zontal one. The experiment can be also performed at con-
stant Fy. In such a case is yo which fluctuates. However
no significant difference between the experimental results
obtained at imposed yo and those obtained at imposed Fy
has been observed. Much care has been taken in the mon-
tage to maintain a good parallelism between the slide and
the track in all positions. The maximum error is around
± 0.015yo.

In order to simplify the interpretation of the results
we imposed a well defined displacement directions for the
spheres of the track and those of the slide. Indeed when
the asperity displacements are symmetric in the pushing
direction and transverse directions many problems may
arise, as it has been discussed in reference [5].

3 The interaction of isolated asperities

We first consider the case of two isolated asperities, which
is schematised in Figure 1c. The track sphere (S1) can
be displaced only vertically and is subjected to a verti-
cal elastic force, of mean stiffness Ky = 2.3 × 104 N/m,
produced by an elastic layer (EL1 in Fig. 1c). The sphere
of the slide (S2) can be displaced only horizontally in the
direction of the loading speed and is subjected to a hori-
zontal elastic force of stiffness Kx, produced by an elastic
layer (EL2 in Fig. 1c). Two values of Kx has been used,
specifically Kx = 9× 106 N/m (rigid case Kx > Ky) and
Kx = 5 × 102 N/m (elastic case Kx < Ky). A minimum
distance yo is imposed between the slide and the track,
such that R < yo < 2R, where R is the sphere radius.
With this geometry the only way for an asperity (S2) of
the slide to pass over an asperity (S1) of the track is to
push down the bottom sphere S1. In Figure 1c, x and y
are respectively the horizontal and vertical distances be-
tween the sphere centres. The point xo, of the top slide
frame, moves at constant speed V , that is xo = V t− x1,
where −x1 is the horizontal distance at which the two
spheres begin to be in contact. The coordinates xo and yo

correspond to the unperturbed distances between the two
sphere centres, that is x = xo and y = yo, when the two
spheres are not in contact.
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3.1 The equations of motion

When the surface of S1 touches that of S2 the geometry
imposes:

y =
√

4R2 − x2, for |x| < x1 (1)

where x1 =
√

4R2 − y2
o.

Therefore with this geometrical constraint, the inter-
action potential U(x), between two spheres, is:

U(x) =
1

2
Ky(

√
4R2 − x2 − yo)2, for |x| < x1

and U(x) = 0 for |x| > x1. In the quasistatic regime,
neglecting friction between the sphere surfaces, the total
energy Et of the two sphere system is:

Et =
1

2
Kx(xo − x)2 +

1

2
Ky(

√
4R2 − x2 − yo)2,

for |x| < x1 (2)

where (x−xo) is the horizontal stretch of the upper elastic
layer.

We now briefly recall the main results of the model
of reference [4]. If the stiffness Kx is very large, that is
the elastic layer of the slide (EL2 in Fig. 1c) is very rigid
(Kx � Ky), equation (2) has only one minimum at x =
xo, that is S1 remains in its unperturbed position and only
S2 moves vertically. In the quasistatic regime, that is when
V � 2R

√
Kx/m (m is the sphere mass), the horizontal

and vertical forces, for |xo| < x1 are

Fx = −

[
∂U

∂x

]
x=xo

= Ky(
√

4R2 − x2
o − yo)

xo√
4R2 − x2

o

(3)

Fy =

[
−
∂U

∂y

]
x=xo

= −Ky(
√

4R2 − x2
o − yo) (4)

with y =
√

4R2 − x2
o and xo = V t − x1. For |xo| > x1,

when there is no interaction between the two spheres,
Fx = 0.

In contrast when Kx < Ky, it can be easily shown that
equation (2) has three extrema of which, two are stable
and one is unstable [5]. Thus, by moving xo, the sphere
S1 of the slider jumps from one stable point to the other.
These jumps between the stable points are just the mech-
anism for energy dissipation in solid friction. Of course in
our system part of the energy is dissipated because of fric-
tion between the sphere surfaces, but we can easily check
if the amount of energy dissipated in the jumps is larger
than that lost by friction between the sphere surfaces.

In practice in our system a few changes of
equation (3) and of equation (4) are required. Firstly Ky

is not strictly constant because when the sphere S2 pen-
etrates inside the rubber layer the contact area increases.
The behaviour of Fy as a function of (y − yo) is shown in
Figure 2. Secondly the friction coefficient ν between the
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Fig. 2. The force Fy exercised on the sphere S1 by the rubber
layer (EL1 in Fig. 1) as a function of the vertical displacement
of S1.

sphere surfaces (bronze-steel) is not 0 but 0.1. Therefore
equation (3) becomes:

Fx = f(y − yo)
νy − xo

y + νxo
for |xo| < x1 (5)

where the function f(y − yo) is the best fit of the data of
Figure 2.

Equation (5) corresponds to an experiment with im-
posed yo. One can check another form of sphere interac-
tion by imposing the normal force Fy and making layer 2
of Figure 1c very rigid, that is Ky � Fy/R. In such a case
is the slide that will move up and down the total energy
for ν = 0 becomes:

Et =
1

2
Kx(xo − x)2 + Fy(

√
4R2 − x2 − yo) for |x| < x1.

(6)

where yo is now the minimum y, imposed by the external
conditions. As a consequence for the rigid case (Kx �
Fy/R) equation (6) has only one minimum at x = xo.
Then, for ν 6= 0, Fx becomes:

Fx = Fy
νy − xo

y + νxo

xo

y
for |xo| < x1 (7)

with y =
√

4R2 − x2
o and xo = V t − x1. Fx = 0 for

|xo| > x1.
In the elastic case, when Kx < Fy/R, also equation (6)

has three extrema like equation (2). Two of these three
extrema are stable and one is unstable. Thus, by moving
xo, the system will jump between the two stable ones.
Therefore also when Fy is imposed, one would expect that
the system has to be more dissipative in the elastic case
than in the rigid one.

3.2 The results at imposed yo

We consider first the case at imposed yo. The results of
the measurements of the horizontal and vertical force pro-
duced by the interaction of two isolated asperities are plot-
ted in Figures 3 and 4 for the rigid and elastic cases re-
spectively.
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Fig. 3. The forces Fy (a) and Fx (b) between two asperities
are plotted as a function of xo for the rigid case with Kx �
Ky and yo = 5.3 mm. The continuous line corresponds to the
experimental measurements whereas the dotted line is obtained
from equation (5) with the parameters given in the text.

In Figure 3b the force Fx is shown as a function of
xo for the rigid case (Kx � Ky). We clearly see that
the shape of the potential derivative 3 is well reproduced
except for a negligible asymmetry produced by the fric-
tion between the two sphere surfaces. This asymmetry
is perfectly taken into account by the Fx obtained from
equation (5).

In Figure 4b the force Fx is plotted as a function of
xo, for Kx < Ky (elastic case). We clearly see that the
negative part of the force is totally erased, therefore the
dissipation is larger in the elastic case than in the rigid
one, that is energy is mainly dissipated in the asperity
jumps.

The energy dissipated in the passage of the sphere S2
over S1, both in the rigid and elastic case, can be esti-
mated, by computing the work Wo done by the force Fx.
The results for a single asperity are shown in Figure 5
where W is plotted as a function of the normal load, which
is simply changed by changing yo. We clearly see that Wo

is much larger in the elastic case that in the rigid one.
Thus at least for two isolated asperities we observe that
the jumps between metastable positions strongly increase
the energy dissipated during the interaction between the
two asperities.

3.3 The results at imposed Fy

The same effects are observed if Fy is imposed instead of
yo. The results are shown in Figure 6 where Fx measured
as a function of xo during the interaction of two asperi-
ties. In the rigid case, Figure 6a, we see that the curve is
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Fig. 4. The forces Fy (a) and Fx (b) between two asperities are
plotted as a function of xo for the elastic case with Kx < Ky

and yo = 5.3 mm.

very well fitted by the prediction done using equation (7).
In contrast in the elastic case, Figure 6b, we immediately
see that the energy dissipation is higher than in the rigid
case, because the negative part of Fx versus x has been
completely erased by the sphere jump. This is quite inter-
esting, because we see that independently of the interac-
tion potential the elastic case is always more dissipative
of the rigid one.

4 The interaction of many asperitites

We now consider the case of many asperities because col-
lective effects may actually destroy the existence of this
multiplicity between metastable positions. Thus we have
studied how the forces Fx and Fy change as a function of
the asperity density ρ on the track surface. This has been
done in such a way that the interaction potential between
the single asperities remain constant, when the number of
asperity is increased. The best way to achieve this result is
to make the experiment imposing the distance yo between
the two surfaces.

4.1 Asperity density dependence

In our experiment the value of ρ can be modified by
changing nd and Nl, specifically ρ = (ndNl)/Nmax, where
Nmax = 957 m−1 is the maximum of the product (ndNl).
As an example of the force evolution at ρ = 0.52 and yo =
5.1 mm we plot Fy and Fx as a function of xo for the rigid
case in Figures 7a, c and elastic case, Figures 7b, d. We
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Fig. 6. The force Fx between two asperities with an imposed
Fy = 20 N is plotted as a function of xo for the rigid (a)
and elastic case (b). The dotted line in (a) is obtained from
equation (7) with µ = 0.11.

see that the evolution of the force is quite different from
that of two isolated asperities. The forces Fx and Fy fluc-
tuate around a well established mean value 〈Fx〉 and 〈Fy〉
respectively. We have also computed the relative r.m.s.
fluctuations σa of Fa, that is σa =

√
(〈F 2

a 〉/〈Fa〉
2)− 1.

We have studied how the mean forces 〈Fx〉, 〈Fy〉 and
the relative fluctuation amplitudes σx, σy change as a func-
tion of ρ. The mean horizontal force 〈Fx〉 is plotted as a
function of ρ in Figure 8a at fixed yo. The corresponding
mean values of Fy are instead plotted in Figure 8b. The
mean values grow as a function of ρ both for the rigid and
elastic cases, but the frictional force is always larger for
the elastic case than for the rigid one, whereas the mean
values of 〈Fy〉 remain comparable in the two cases.

The relative r.m.s. fluctuations σx and σy are instead
plotted as a function of ρ in Figures 8c, d respectively. The
relative fluctuations of Fx and Fy decrease as a function
of the asperity number. In Figure 9a, b, σy and σx are

plotted as a function of ρ in a log-log scale. The straight
continuous lines, which are traced for reference, represent
the function ρ−1/2. We see that σy and σx decrease, for

small ρ, roughly as ρ−1/2. For increasing ρ the behaviour of
σy and σx as a function of ρ becomes more complex. This
shows that for small ρ, that is when the distances among
asperities are much larger than 2R, the asperity jumps are
almost uncorrelated. Whereas when the asperities begin
to be close a certain degree of correlation exists and the
jumps are not totally independent. This fact, which was
already discussed in reference [9] has a very important
consequence, when one tries to estimate the friction force
for many asperities starting from the value estimated from
a single asperity.

4.2 Comparison with models

Indeed the value of the energy Wo dissipated in a sin-
gle jump could be used to estimate how the tangential
force grows when the number of asperities is increased.
If the asperities are independent then, from the model of
reference [4], one obtains for the total tangential force:

〈Fx〉 = NmaxρnWo. (8)

The force should increase linearly as a function of ρ. In
Figure 8a the continuous line is computed from equa-
tion (8), using the value of Wo measured for the single
asperity. We clearly see that the measured values are lower
than the computed ones even for the elastic case. This is
due to the asperity coupling, which reduces the amplitude
of the asperity jumps. Furthermore the dependence of Fx
on ρ is far to be linear. However what is very important
to notice here, is that even in presence of many asperities
Fx in the rigid case is smaller than in the elastic one.

In Figure 10a we show the measured values of Fx as
a function of ρ in a log-log scale. Also the measurements
done at constant Fy are reported. We clearly see that Fx
increases as a power law both for the rigid and for the
elastic case, that is:

Fx ∝ ρ
γ (9)

with γ ' 0.66 ± 0.03 both for the rigid and elastic case.
This fit is shown also in Figure 8a as a dashed line and the
agreement is quite good. The value of the exponent γ has
been predicted in a recent paper [9] and takes into account
the fact that not all the asperities are independent, but a
certain degree of correlation among jumps exists. This is
consistent with the behaviour of σx and σy as a function
of ρ, which we discussed in the previous section.

Finally we have computed the friction coefficient µ be-
tween the two rough surfaces as the ratio between 〈Fx〉
and 〈Fy〉. The value of µ as a function of ρ are reported
in Figure 10b. The mean value of µ is about 0.3 for the
elastic case and 0.13 for the rigid case. We see that the
value for the rigid is close to the value of the bronze-steel
friction whereas the presence of an elastic matrix strongly
increases the dissipation.
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4.3 Velocity dependence

It has been predicted that the energy dissipated in the
interaction of two isolated asperities scales for V → 0 as
V 2/3 [16,17]. We checked this dependence both for the
rigid and for the elastic cases. The results are shown in
Figure 11a where µ is plotted as a function of V 2/3 and
in Figure 11b where µ is plotted as a function of V in
a log-log scale. We see that the growth of µ with veloc-

ity is confirmed. However the V 2/3 law can be well fitted
only for a single asperity in the elastic case, for very small
velocities. In the rigid case, with only two isolated asper-
ities, we see (Fig. 11b) that a logarithmic dependence on
V is clearly much better. The same behaviour is observed
for the elastic case with many asperities, as can be seen
in Figure 11b. Thus in our system the friction coefficient
seems to have a logarithmic dependence on V instead of
the predicted dependence. The reason of this discrepancy
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is unclear, but it is probably related to the fact that the
simple hypothesis of the model [16,17], are not totally re-
spected by the vertical dynamics of our system. Indeed
in the model, the interaction potential is velocity inde-
pendent. This is not the case in our system because of a
certain degree of viscoelasticity of the rubber layers, used
in the experimental set-up.
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Fig. 11. The dependence of Fx on V for the single asperity in
the elastic (o) and rigid (∗) cases. The symbols (+) correspond
to the elastic cases with ρ = 0.52. In all of the experiments
yo = 5.3 mm.

5 Conclusions

We have analysed the energy dissipation mechanisms of
two surfaces with macroscopic asperities. The tangential
force between these two surfaces have been studied as a
function of the surface compliance using two types of in-
teraction potential among asperities. This set of measure-
ments shows that, as predicted by simple models [3,4] of
solid friction, energy is dissipated in the asperity jumps
between metastable positions. This is true not only in the
case of a single asperity but also in a system composed
by many asperities. We have studied how the tangential
force between the two surfaces depends on the density
of the asperities. As discussed in reference [9], the asper-
ity coupling reduces the amplitude of the jumps and the
amount of dissipated energy increases slower than linear
as a function of the asperity density. Indeed we have ob-
served that the pinning force has a power law dependence
on the asperity density, with an exponent of 2/3 which has
been predicted in reference [9]. The agreement between the
predictions of reference [9] and these experimental analysis
shows that the analysis of reference [9] is useful in describ-
ing the dynamics of our artificial surfaces, which presents
instabilities involving a large number of particles [13]. We
also recall that these surfaces have a recovery length [14]
which also agrees with the results of reference [9]. The ex-
perimental results on the recovery length described in [14]
show a strong analogy with the motion of a contact line in
the quasi static regime [7,18]. Therefore the experimental
study, here described, can be very useful in order to under-
stand the influence of disorder in the displacement of a liq-
uid interface on a plane and the microscopic mechanisms
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of solid friction, but also in the study of other phenomena,
such as the friction at the tip in AFM microscope [6].

Another important effect, which has not been investi-
gated here, is the role of three dimensional effects on the
observed phenomenology. In our experiment the driving
force is almost tangential to the surfaces. It will be in-
teresting to study how the distance between the surface
and the application point of the driving force may modify
the results. The coupling between the driving force will be
done via an elastic layer of a certain thickness. This study
will allow us to give more insight on the coupling of the
elastic deformation of the solid and that of the asperities.
This point, which is not yet very well understood, could
be easily studied in our system.

We acknowledge L. Bocquet, E. Charlaix and J. Crassous for
useful discussion. This work has been partially supported by
CEE contract no ERBCHRXCT 940546.
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